EMAIL THIS PAGE TO A FRIEND

Journal of neurophysiology

New insights into short-term synaptic facilitation at the frog neuromuscular junction.


PMID 25210157

Abstract

Short-term synaptic facilitation occurs during high-frequency stimulation, is known to be dependent on presynaptic calcium ions, and persists for tens of milliseconds after a presynaptic action potential. We have used the frog neuromuscular junction as a model synapse for both experimental and computer simulation studies aimed at testing various mechanistic hypotheses proposed to underlie short-term synaptic facilitation. Building off our recently reported excess-calcium-binding-site model of synaptic vesicle release at the frog neuromuscular junction (Dittrich M, Pattillo JM, King JD, Cho S, Stiles JR, Meriney SD. Biophys J 104: 2751-2763, 2013), we have investigated several mechanisms of short-term facilitation at the frog neuromuscular junction. Our studies place constraints on previously proposed facilitation mechanisms and conclude that the presence of a second class of calcium sensor proteins distinct from synaptotagmin can explain known properties of facilitation observed at the frog neuromuscular junction. We were further able to identify a novel facilitation mechanism, which relied on the persistent binding of calcium-bound synaptotagmin molecules to lipids of the presynaptic membrane. In a real physiological context, both mechanisms identified in our study (and perhaps others) may act simultaneously to cause the experimentally observed facilitation. In summary, using a combination of computer simulations and physiological recordings, we have developed a stochastic computer model of synaptic transmission at the frog neuromuscular junction, which sheds light on the facilitation mechanisms in this model synapse.