EMAIL THIS PAGE TO A FRIEND

PloS one

Antitumor effect of the tyrosine kinase inhibitor nilotinib on gastrointestinal stromal tumor (GIST) and imatinib-resistant GIST cells.


PMID 25221952

Abstract

Despite the benefits of imatinib for treating gastrointestinal stromal tumors (GIST), the prognosis for high risk GIST and imatinib-resistant (IR) GIST remains poor. The mechanisms of imatinib resistance have not yet been fully clarified. The aim of the study was to establish imatinib-resistant cell lines and investigate nilotinib, a second generation tyrosine kinase inhibitor (TKI), in preclinical models of GIST and imatinib-resistant GIST. For a model of imatinib-resistant GIST, we generated resistant cells from GK1C and GK3C cell lines by exposing them to imatinib for 6 months. The parent cell lines GK1C and GK3C showed imatinib sensitivity with IC50 of 4.59±0.97 µM and 11.15±1.48 µM, respectively. The imatinib-resistant cell lines GK1C-IR and GK3C-IR showed imatinib resistance with IC50 values of 11.74±0.17 µM (P<0.001) and 41.37±1.07 µM (P<0.001), respectively. The phosphorylation status of key cell signaling pathways, receptor tyrosine kinase KIT (CD117), platelet-derived growth factor receptor alpha (PDGFRA) and downstream signaling kinases: serine-threonine kinase Akt (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) or the non-receptor tyrosine kinase: proto-oncogene tyrosine-protein kinase Src (SRC), was analyzed in established cell lines and ERK1/2 phosphorylation was found to be increased compared to the parental cells. Nilotinib demonstrated significant antitumor efficacy against GIST xenograft lines and imatinib-resistant GIST cell lines. Thus, nilotinib may have clinical potential for patients with GIST or imatinib-resistant GIST.