EMAIL THIS PAGE TO A FRIEND

Biochimica et biophysica acta

DERA is the human deoxyribose phosphate aldolase and is involved in stress response.


PMID 25229427

Abstract

Deoxyribose-phosphate aldolase (EC 4.1.2.4), which converts 2-deoxy-d-ribose-5-phosphate into glyceraldehyde-3-phosphate and acetaldehyde, belongs to the core metabolism of living organisms. It was previously shown that human cells harbor deoxyribose phosphate aldolase activity but the protein responsible of this activity has never been formally identified. This study provides the first experimental evidence that DERA, which is mainly expressed in lung, liver and colon, is the human deoxyribose phosphate aldolase. Among human cell lines, the highest DERA mRNA level and deoxyribose phosphate aldolase activity were observed in liver-derived Huh-7 cells. DERA was shown to interact with the known stress granule component YBX1 and to be recruited to stress granules after oxidative or mitochondrial stress. In addition, cells in which DERA expression was down-regulated using shRNA formed fewer stress granules and were more prone to apoptosis after clotrimazole stress, suggesting the importance of DERA for stress granule formation. Furthermore, the expression of DERA was shown to permit cells in which mitochondrial ATP production was abolished to make use of extracellular deoxyinosine to maintain ATP levels. This study unraveled a previously undescribed pathway which may allow cells with high deoxyribose-phosphate aldolase activity, such as liver cells, to minimize or delay stress-induced damage by producing energy through deoxynucleoside degradation.