Journal of virology

M27 expressed by cytomegalovirus counteracts effective type I interferon induction of myeloid cells but not of plasmacytoid dendritic cells.

PMID 25231302


In healthy individuals, the functional immune system effectively confines human cytomegalovirus (CMV) replication, while viral immune evasion and persistence preclude sterile immunity. Mouse CMV (MCMV) is a well-established model to study the delicate CMV-host balance. Effective control of MCMV infection depends on the induction of protective type I interferon (IFN-I) responses. Nevertheless, it is unclear whether in professional antigen-presenting cell subsets MCMV-encoded evasins inhibit the induction of IFN-I responses. Upon MCMV treatment, enhanced expression of MCMV immediate-early and early proteins was detected in bone marrow cultures of macrophages and myeloid dendritic cells compared with plasmacytoid dendritic cell cultures, whereas plasmacytoid dendritic cells mounted more vigorous IFN-I responses. Experiments with Toll-like receptor (TLR)- and/or RIG-I like helicase (RLH)-deficient cell subsets revealed that upon MCMV treatment of myeloid cells, IFN-I responses were triggered independently of TLR and RLH signaling, whereas in plasmacytoid dendritic cells, IFN-I induction was strictly TLR dependent. Macrophages and myeloid dendritic cells treated with either UV-inactivated MCMV or live MCMV that lacked the STAT2 antagonist M27 mounted significantly higher IFN-I responses than cells treated with live wild-type MCMV. In contrast, plasmacytoid dendritic cells responded similarly to UV-inactivated and live MCMV. These experiments illustrated that M27 not only inhibited IFN-I-mediated receptor signaling, but also evaded the induction of IFN responses in myeloid dendritic cells. Furthermore, we found that additional MCMV-encoded evasins were needed to efficiently shut off IFN-I responses of macrophages, but not of myeloid dendritic cells, thus further elucidating the subtle adjustment of the host-pathogen balance. MCMV may induce IFN-I responses in fibroblasts and epithelial cells, as well as in antigen-presenting cell subsets. We focused on the analysis of IFN-I responses of antigen-presenting cell subsets, including plasmacytoid dendritic cells, myeloid dendritic cells, and macrophages, which are all triggered by MCMV to mount IFN-I responses. Interestingly, myeloid dendritic cells and macrophages, but not plasmacytoid dendritic cells, are readily MCMV infected and support viral gene expression. As expected from previous studies, plasmacytoid dendritic cells sense MCMV Toll-like receptor 9 (TLR9) dependently, whereas in myeloid cells, IFN-I induction is entirely TLR and RLH independent. MCMV-encoded M27 does not impair the IFN-I induction of plasmacytoid dendritic cells, while in myeloid dendritic cells, it reduces IFN-I responses. In macrophages, M27 plus other, not yet identified evasins profoundly inhibit the induction of IFN-I responses. Collectively, these results illustrate that MCMV has evolved diverse mechanisms to differentially modulate IFN-I responses in single immune cell subsets.