International heart journal

Geometrical characteristics of left ventricular dyssynchrony in advanced heart failure. Myocardial strain analysis by tagged MRI.

PMID 25310930


The aims of this study were to quantify the geometrical differences in left ventricular (LV) dyssynchrony in patients with heart failure (HF) using cine-tagged MRI, and to investigate the relationship between dyssynchrony and major adverse cardiac events (MACE) in HF.In 67 patients with HF [mean LV ejection fraction (LVEF), 34%], cardiac MRI using a 3-Tesla scanner was performed. The dyssynchrony time between septal and lateral segments (SL-DT) and between basal and apical segments (BA-DT) was computed by cross-correlation analysis of the strain time-curves from the cine-tagged MRI. After receiving optimal medical treatment, all patients were followed-up for a mean period of 27 months. The primary endpoint was MACE that consisted of cardiac death or HF hospitalization or a left ventricular assist device due to refractory pump failure. Multivariate logistic regression analysis was performed to determine the ability of SL-DT, BA-DT, and HF biomarkers to predict MACE.Multivariate logistic regression analysis showed that the odds ratio to predict MACE was 0.935 for LVEF (P = 0.021), 1.016 for BA-DT (P = 0.026), and 0.971 for systolic blood pressure (P = 0.126).The results show that basal-apical dyssynchrony is an independent predictor of MACE in HF patients.