Infection and immunity

Toll-like receptor 2 and NLRP3 cooperate to recognize a functional bacterial amyloid, curli.

PMID 25422268


Amyloids are proteins with cross-β-sheet structure that contribute to pathology and inflammation in complex human diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes, and secondary amyloidosis. Bacteria also produce amyloids as a component of their extracellular matrix during biofilm formation. Recently, several human amyloids were shown to activate the NLRP3 inflammasome, leading to the activation of caspase 1 and production of interleukin 1β (IL-1β). In this study, we investigated the activation of the NLRP3 inflammasome by bacterial amyloids using curli fibers, produced by Salmonella enterica serovar Typhimurium and Escherichia coli. Here, we show that curli fibers activate the NLRP3 inflammasome, leading to the production of IL-1β via caspase 1 activation. Investigation of the underlying mechanism revealed that activation of Toll-like receptor 2 (TLR2) by curli fibers is critical in the generation of IL-1β. Interestingly, activation of the NLRP3 inflammasome by curli fibers or by amyloid β of Alzheimer's disease does not cause cell death in macrophages. Overall, these data identify a cross talk between TLR2 and NLRP3 in response to the bacterial amyloid curli and generation of IL-1β as a product of this interaction.