EMAIL THIS PAGE TO A FRIEND

Molecular pharmaceutics

Effect of anionic PEGylated polypeptide on gene transfection mediated by glycolipid conjugate micelles.


PMID 25490413

Abstract

To improve the gene transfection efficiency mediated by chitosan-g-stearic acid (CS) micelles, poly(ethylene glycol)-b-poly(γ-glutamic acid) (PG) was incorporated into a CS-based gene delivery system. CS/PG/pDNA complexes were prepared by ionic interaction. CS and PEGylated CS (PCS) micelles were introduced to prepare binary complexes for use as controls. CS/PG/pDNA complexes possessed similar sizes and presented as irregular spheroids in shape. The incorporation of PG into CS/pDNA complexes did not affect the ability of CS to compact pDNA and also showed a protective effect against DNase I based degradation of pDNA. Importantly, PG could increase gene transfection efficiency, which was also affected by the mixing methods used for the preparation of CS/PG/pDNA ternary complexes. The transfection efficiencies mediated by CS/PG/pDNA complexes against HEK293 and EC-1 cells reached up to 40.8% and 11.6%, respectively, which were much higher than those of CS/pDNA complexes (1.3% and 4.0%) and PCS/pDNA complexes (0.8% and 2.4%). In addition, the incorporation of PG into CS/pDNA complexes significantly enhanced cellular uptake in HEK293 and EC-1 cells and, additionally, improved endosomal escape and intracellular vector unpacking. However, the incorporation of PG reduced the cellular uptake of CS/PG/pDNA complexes in macrophages (RAW264.7 cells). It was further demonstrated that, in addition to a nonspecific charge-mediated binding to cell membranes, a γ-PGA-specific receptor-mediated pathway was involved in the internalization of CS/PG/pDNA complexes. These results indicated that PG played multiple important roles in enhancing the transfection efficiency of CS/PG/pDNA complexes.