EMAIL THIS PAGE TO A FRIEND

Journal of immunology (Baltimore, Md. : 1950)

PU.1 opposes IL-7-dependent proliferation of developing B cells with involvement of the direct target gene bruton tyrosine kinase.


PMID 25505273

Abstract

Deletion of genes encoding the E26 transformation-specific transcription factors PU.1 and Spi-B in B cells (CD19-CreΔPB mice) leads to impaired B cell development, followed by B cell acute lymphoblastic leukemia at 100% incidence and with a median survival of 21 wk. However, little is known about the target genes that explain leukemogenesis in these mice. In this study we found that immature B cells were altered in frequency in the bone marrow of preleukemic CD19-CreΔPB mice. Enriched pro-B cells from CD19-CreΔPB mice induced disease upon transplantation, suggesting that these were leukemia-initiating cells. Bone marrow cells from preleukemic CD19-CreΔPB mice had increased responsiveness to IL-7 and could proliferate indefinitely in response to this cytokine. Bruton tyrosine kinase (BTK), a negative regulator of IL-7 signaling, was reduced in preleukemic and leukemic CD19-CreΔPB cells compared with controls. Induction of PU.1 expression in cultured CD19-CreΔPB pro-B cell lines induced Btk expression, followed by reduced STAT5 phosphorylation and early apoptosis. PU.1 and Spi-B regulated Btk directly as shown by chromatin immunoprecipitation analysis. Ectopic expression of BTK was sufficient to induce apoptosis in cultured pro-B cells. In summary, these results suggest that PU.1 and Spi-B activate Btk to oppose IL-7 responsiveness in developing B cells.