Molecular and cellular biochemistry

Mitochondrial estrogen receptor β inhibits cell apoptosis via interaction with Bad in a ligand-independent manner.

PMID 25524600


Previous studies reported that estrogen receptor β (ERβ) is localized to mitochondria, whereas little is known about the physiological functions of mitochondrial ERβ. In the present study, we explored the role of mitochondrial ERβ in regulating apoptosis using stable ERβ-expressing and ERβ knockdown cells lines. We found that exogenous ERβ was mainly expressed in mitochondrial but not in nuclear after ERβ overexpression and protected cells from apoptosis induced by hydrogen peroxide (H₂O₂), ultraviolet (UV), and staurosporine (STS). Moreover, overexpression of ERβ prevented Bax activation, cytochrome c release, caspase-3 activation, and PARP cleavage during apoptosis. Furthermore, knockdown of ERβ significantly suppressed the expression of ERβ in mitochondrial and promoted cell apoptosis induced by H₂O₂, UV, and STS. Downregulation of ERβ also enhanced Bax activation, cytochrome c release, caspase-3 activation and PARP cleavage. In addition, our study discovered that mitochondrial ERβ interacted with proapoptotic protein Bad in a ligand-independent manner, which suggests that mitochondrial ERβ inhibits Bad, and prevents Bax activation and cytochrome c release. Collectively, the results of this study support that mitochondrial ERβ prevents cell apoptosis via the mitochondrial apoptotic pathway in a ligand-independent manner.