Journal of virology

Depletion of glycoprotein gp85 from virosomes made with Epstein-Barr virus proteins abolishes their ability to fuse with virus receptor-bearing cells.

PMID 2555536


Entry of an enveloped virus such as Epstein-Barr virus (EBV) into host cells involves fusion of the virion envelope with host cell membranes either at the surface of the cell or within endocytic vesicles. Previous work has indirectly implicated the EBV glycoprotein gp85 in this fusion process. A neutralizing monoclonal antibody to gp85, F-2-1, failed to inhibit binding of EBV to its receptor but interfered with virus fusion as measured with the self-quenching fluorophore octadecyl rhodamine B chloride (R18) (N. Miller and L. M. Hutt-Fletcher, J. Virol. 62:2366-2372, 1988). To test further the hypothesis that gp85 functions as a fusion protein, EBV virion proteins including or depleted of gp85 were incorporated into lipid vesicles to form virosomes. Virosomes were labeled with R18, and those that were made with undepleted protein were shown to behave in a manner similar to that of R18-labeled virus. They bound to receptor-positive but not to receptor-negative cells and fused with Raji cells but not with receptor-positive, fusion-incompetent Molt 4 cells; monoclonal antibodies that inhibited binding or fusion of virus inhibited binding and fusion of virosomes, and virus competed with virosomes for attachment to cells. In contrast, virosomes made from virus proteins depleted of gp85 by immunoaffinity chromatography remained capable of binding to receptor-positive cells but failed to fuse. These results are compatible with the hypothesis that gp85 is actively involved in the fusion of EBV with lymphoblatoid cell lines and suggest that the ability of antibody F-2-1 to neutralize infectivity of EBV represents a direct effect on the function of gp85 as a fusion protein.