EMAIL THIS PAGE TO A FRIEND

Environmental science and pollution research international

Metal uptake via phosphate fertilizer and city sewage in cereal and legume crops in Pakistan.


PMID 25578611

Abstract

Crop irrigation with heavy metal-contaminated effluents is increasingly common worldwide and necessitates management strategies for safe crop production on contaminated soils. This field study examined the phytoavailability of three metals (Cd, Cu, and Zn) in two cereal (wheat, maize) and legume (chickpea, mungbean) crops in response to the application of either phosphatic fertilizer or sewage-derived water irrigation over two successive years. Five fertilizer treatments, i.e. control, recommended nitrogen (N) applied alone and in combination of three levels of phosphorus (P), half, full and 1.5 times of recommended P designated as N0P0, N1P0, N1P0.5, N1P1.0, and N1P1.5, respectively. Tissue concentrations of Cd, Cu, Zn, and P were determined in various plant parts, i.e., root, straw, and grains. On the calcareous soils studied while maximum biomass production was obtained with application of P at half the recommended dose, the concentrations of metals in the crops generally decreased with increasing P levels. Tissue metal concentrations increased with the application of N alone. Translocation and accumulation of Zn and Cu were consistently higher than Cd. And the pattern of Cd accumulation differed among plant species; more Cd being accumulated by dicots than monocots, especially in their grains. The order of Cd accumulation in grains was maize > chickpea > mungbean > wheat. Mungbean and chickpea straws also had higher tissue Cd concentration above permissible limits. The two legume species behaved similarly, while cereal species differed from each other in their Cd accumulation. Metal ion concentrations were markedly higher in roots followed by straw and grains. Increasing soil-applied P also increased the extractable metal and P concentrations in the post-harvest soil. Despite a considerable addition of metals by P fertilizer, all levels of applied P effectively decreased metal phytoavailability in sewage-irrigated soils, and applying half of the recommended dose of P fertilizer was the most feasible solution for curtailing plant metal uptake from soils. These findings may have wide applications for safer crop production of monocot species when irrigating crops with sewage effluent-derived waters.