Oncology reports

CDK5RAP1 deficiency induces cell cycle arrest and apoptosis in human breast cancer cell line by the ROS/JNK signaling pathway.

PMID 25607831


Cyclin-dependent kinase 5 regulatory subunit associated protein 1 (CDK5RAP1) is an enzyme which post-synthetically converts the RNA modification N6-iso-pentenyladenosine (i6A) into 2-methylthio-N6-isopentenyladenosine (ms2i6A). However, the interaction between CDK5RAP1 deficiency and cell apoptosis has not been studied. Breast cancer has long been a leading cause of mortality in the world. Therefore, in the present study, CDK5RAP1 deficiency in a human breast cancer cell line was investigated. CDK5RAP1 small interfering RNA (siRNA) and negative control siRNA were transfected into MCF-7 cells, and the cells were further incubated for 48 h. CDK5RAP1 deficiency suppressed tumor growth in MCF-7 cells and arrested the cells at G2/M phase. CDK5RAP1 deficiency also induced cell apoptosis and reactive oxygen species (ROS) generation. Furthermore, western blot analysis showed that the expression of phospho-c-Jun N-terminal kinase (p-JNK), p53, caspase-9 and caspase-3 were upregulated in CDK5RAP1-deficient MCF-7 cells. Pretreatment with N-acetyl-cysteine (NAC), the inhibitor of ROS, or with SP600125, the inhibitor of JNK, prevented the apoptosis and the high expression of p-JNK, p53, caspase-9 and caspase-3 in CDK5RAP1-deficient MCF-7 cells. Taken together, these data indicated that CDK5RAP1 deficiency induced cell cycle arrest and apoptosis in human breast cancer MCF-7 cells by the ROS/JNK signaling pathway. Our findings indicated a novel therapeutic strategy for cancer.