EMAIL THIS PAGE TO A FRIEND

Journal of clinical periodontology

Functionalization of titanium implants using a modular system for binding and release of VEGF enhances bone-implant contact in a rodent model.


PMID 25640057

Abstract

To test the immobilization of vascular endothelial growth factor (VEGF165 ) on the surface of titanium implants using DNA oligonucleotide (ODN) anchor strands for the ability to enhance periimplant bone formation. DNA oligonucleotides were anchored to the surface of sandblasted acid-etched (SAE) titanium screw implants and were hybridized with complementary strands of ODN conjugated to rhVEGF165 . The implants were tested against blank SAE implants and SAE implants with nano-anchored ODN. The implants were inserted into the tibiae of 36 Sprague-Dawley rats. Primary outcome parameters were bone-implant contact (BIC), amount of new bone formation and periimplant bone density (BD). density after 1, 4 and 13 weeks. Unit of analysis has been the individual implant. Implants with rhVEGF165 hybridized to ODN anchor strands exhibited significantly increased average BIC after 1 month compared to blank implants and implants with anchored ODN strands. It is concluded that rhVEGF165 immobilized on the surface of titanium implants through nano-anchored oligonucleotide strands can accelerate BIC of sandblasted and etched titanium implants to a certain extent. The radius of effect of the growth factor appears to be limited to tissue immediately adjacent to the implant surface.