Cancer medicine

Warburg effect regulated by amphiregulin in the development of colorectal cancer.

PMID 25644309


Colorectal cancer (CRC) is one of the most frequently occurring cancers with high morbidity and mortality worldwide. Amphiregulin (AREG), a member of the epidermal growth factor family and a rational target for CRC therapy, is essential for the three-dimensional structure of tumor formation. To clone the genes associated with increased AREG expression, we performed a cDNA microarray analysis in two CRC cell lines undergoing two-dimensional (2DC) and three-dimensional culture (3DC). Upregulated (>2.0-fold) and downregulated (<0.5-fold) genes in 3DC compared with 2DC were selected. Pathway analysis using DAVID based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases revealed a number of genes involved in glycolysis. In CRC cells, glucose elevated the expression of GLUT1 and AREG as well as the activity of the hypoxia-inducible factor 1 (HIF-1) luciferase reporter promoter. The suppression of AREG expression reduced the uptake of glucose and production of lactate. Luciferase assay identified a critical regulatory region for AREG expression between -130 and -180 bp upstream of the start site, which contained a carbohydrate response element (ChoRE). Max-like protein X (MLX) bound to ChoRE and enhanced the expression of AREG. Together these data suggest that AREG plays a pivotal role in the development of CRC through activation of the Warburg effect.