Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie

Binding of VEGF-A is sufficient to abrogate the disturbing effects of VEGF-B together with VEGF-A on retinal endothelial cells.

PMID 25663437


Inhibition of vascular endothelial growth factor (VEGF) is a promising strategy to treat retinal complications of diabetes. In contrast to VEGF-A binding ranibizumab, aflibercept also binds to other members of the VEGF family including VEGF-B, but potential effects of this factor on permeability and angiogenic processes are unclear. Therefore, we studied how VEGF-B variants as single agents or together with VEGF-A165 might affect proliferation, migration, or barrier function of retinal endothelial cells (REC). Also investigated was the normalization of REC properties with both VEGF-inhibitors to explore if additional targeting of VEGF-B is relevant. Stimulation of proliferation or migration of immortalized bovine REC (iBREC) and disturbance of their barrier by exposure to VEGF-B variants (as single factors or together with VEGF-A165) was determined with or without VEGF-binding proteins being added. Permeability of iBREC was assessed by measuring their transendothelial resistance (TER) and expression of the tight junction protein claudin-1. VEGF-B167 and VEGF-B186 enhanced proliferation of iBREC but these isoforms did not affect cell migration. Interestingly, ranibizumab completely blocked both migration and proliferation induced by VEGF-A plus VEGF-B. Both VEGF-B variants did also not affect barrier function or claudin-1 expression in a normal or high-glucose environment. Accordingly, binding VEGF-A was enough to normalize a reduced TER and reinstate claudin-1 lost during treatment with this factor in combination with VEGF-B. Important properties and functions of REC seem not to be affected by any VEGF-B variant and targeting the key factor VEGF-A is sufficient to normalize growth factor-disturbed cells of this type.