Oncology research

Epithelial-mesenchymal transition contributes to docetaxel resistance in human non-small cell lung cancer.

PMID 25700358


Lung cancer is an aggressive malignancy with high morbidity and mortality. Chemotherapy has always been the principal treatment measure, but its acquired resistance becomes a critical problem. In the current study, we established a new docetaxel-resistant human non-small lung cancer (NSCLC) cell line A549/Docetaxel. The resistance index (RI) of A549/Docetaxel cells and A549 induced by TGF-β to docetaxel were 8.91 and 11.5, respectively. Compared to the parental A549 cells, the multiplication time of A549/Docetaxel was prolonged, the proportion of the cell cycle in the S phase decreased while that in the G1 phase increased, and apoptotic rate was much lower. The morphology of the resistant cells eventuated epithelial-mesenchymal transition (EMT), which was confirmed by the higher expression of fibronectin, vimentin (mesenchymal markers), and lower expression of E-cadherin (epithelial marker) at mRNA and proteins levels. Furthermore, the representative markers for docetaxel resistance were examined, including ABCB1 (MDR1), Bcl-2, Bax, and tubulin, to figure out the mechanisms of the resistance of A549/Docetaxel. In summary, we have established a typical docetaxel-resistant human NSCLC cell line A549/Docetaxel, and it was suggested that the multidrug resistance of A549/Docetaxel was related to EMT.