Journal of pharmacological sciences

Polaprezinc attenuates cyclophosphamide-induced cystitis and related bladder pain in mice.

PMID 25727961


Cav3.2 T-type Ca(2+) channels targeted by H2S, a gasotransmitter, participate in cyclophosphamide-induced cystitis and bladder pain. Given that zinc selectively inhibits Cav3.2 among T-channel isoforms and also exhibits antioxidant activity, we examined whether polaprezinc (zinc-l-carnosine), a medicine for peptic ulcer treatment and zinc supplementation, reveals preventive or therapeutic effects on bladder inflammation and/or pain in the mouse with cyclophosphamide-induced cystitis, a model for interstitial cystitis. Systemic administration of cyclophosphamide caused cystitis-related symptoms including increased bladder weight and vascular permeability, and histological signs of bladder edema, accompanied by bladder pain-like nociceptive behavior/referred hyperalgesia. All these symptoms were significantly attenuated by oral preadministration of polaprezinc at 400 mg/kg. The same dose of polaprezinc also prevented the increased malondialdehyde level, an indicator of lipid peroxidation, and protein upregulation of cystathionine-γ-lyase, an H2S-generating enzyme, but not occludin, a tight junction-related membrane protein, in the bladder tissue of cyclophosphamide-treated mice. Oral posttreatment with polaprezinc at 30-100 mg/kg reversed the nociceptive behavior/referred hyperalgesia in a dose-dependent manner without affecting the increased bladder weight. Together, our data show that zinc supplementation with polaprezinc prevents the cyclophosphamide-induced cystitis probably through the antioxidant activity, and, like T-channel blockers, reverses the established cystitis-related bladder pain in mice, suggesting novel therapeutic usefulness of polaprezinc.

Related Materials

Product #



Molecular Formula

Add to Cart

Cyclophosphamide monohydrate, bulk package
C7H15Cl2N2O2P · H2O
Cyclophosphamide monohydrate, ISOPAC®
C7H15Cl2N2O2P · H2O
Cyclophosphamide monohydrate, analytical standard
C7H15Cl2N2O2P · H2O