EMAIL THIS PAGE TO A FRIEND

Analytica chimica acta

Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions.


PMID 25732695

Abstract

A novel, highly selective and sensitive paper-based colorimetric sensor for trace determination of copper (Cu(2+)) ions was developed. The measurement is based on the catalytic etching of silver nanoplates (AgNPls) by thiosulfate (S2O3(2-)). Upon the addition of Cu(2+) to the ammonium buffer at pH 11, the absorption peak intensity of AuNPls/S2O3(2-) at 522 nm decreased and the pinkish violet AuNPls became clear in color as visible to the naked eye. This assay provides highly sensitive and selective detection of Cu(2+) over other metal ions (K(+), Cr(3+), Cd(2+), Zn(2+), As(3+), Mn(2+), Co(2+), Pb(2+), Al(3+), Ni(2+), Fe(3+), Mg(2+), Hg(2+) and Bi(3+)). A paper-based colorimetric sensor was then developed for the simple and rapid determination of Cu(2+) using the catalytic etching of AgNPls. Under optimized conditions, the modified AgNPls coated at the test zone of the devices immediately changes in color in the presence of Cu(2+). The limit of detection (LOD) was found to be 1.0 ng mL(-1) by visual detection. For semi-quantitative measurement with image processing, the method detected Cu(2+) in the range of 0.5-200 ng mL(-1)(R(2)=0.9974) with an LOD of 0.3 ng mL(-1). The proposed method was successfully applied to detect Cu(2+) in the wide range of real samples including water, food, and blood. The results were in good agreement according to a paired t-test with results from inductively coupled plasma-optical emission spectrometry (ICP-OES).