EMAIL THIS PAGE TO A FRIEND

The New phytologist

Immune activation mediated by the late blight resistance protein R1 requires nuclear localization of R1 and the effector AVR1.


PMID 25760731

Abstract

Resistance against oomycete pathogens is mainly governed by intracellular nucleotide-binding leucine-rich repeat (NLR) receptors that recognize matching avirulence (AVR) proteins from the pathogen, RXLR effectors that are delivered inside host cells. Detailed molecular understanding of how and where NLR proteins and RXLR effectors interact is essential to inform the deployment of durable resistance (R) genes. Fluorescent tags, nuclear localization signals (NLSs) and nuclear export signals (NESs) were exploited to determine the subcellular localization of the potato late blight protein R1 and the Phytophthora infestans RXLR effector AVR1, and to target these proteins to the nucleus or cytoplasm. Microscopic imaging revealed that both R1 and AVR1 occurred in the nucleus and cytoplasm, and were in close proximity. Transient expression of NLS- or NES-tagged R1 and AVR1 in Nicotiana benthamiana showed that activation of the R1-mediated hypersensitive response and resistance required localization of the R1/AVR1 pair in the nucleus. However, AVR1-mediated suppression of cell death in the absence of R1 was dependent on localization of AVR1 in the cytoplasm. Balanced nucleocytoplasmic partitioning of AVR1 seems to be a prerequisite. Our results show that R1-mediated immunity is activated inside the nucleus with AVR1 in close proximity and suggest that nucleocytoplasmic transport of R1 and AVR1 is tightly regulated.