Molecular medicine reports

Roles of lipoxin A4 receptor activation and anti-interleukin-1β antibody on the toll-like receptor 2/mycloid differentiation factor 88/nuclear factor-κB pathway in airway inflammation induced by ovalbumin.

PMID 25760938


Previous studies investigating the role of toll-like receptors (TLRs) in asthma have been inconclusive. It has remained elusive whether the toll-like receptors (TLR2)/mycloid differentiation factor 88 (MyD88)/nuclear factor (NF)-κB signaling pathway is involved in lipoxin A4 (LXA4)-induced protection against asthma. Therefore, the present study investigated whether ovalbumin (OVA)-induced airway inflammation is mediated by upregulation of the TLR2/MyD88/NF-κB signaling pathway, and whether it proceeds via the inhibition of the activation of the LXA4 receptor and anti-interleukin (IL)-1β antibodies. Mice with airway inflammation induced by OVA administration were treated with or without a LXA4 receptor agonist, BML-111 and anti-IL-1β antibody. Serum levels of IL-1β, IL-4, IL-8 and interferon-γ (IFN-γ) were assessed, and levels of IL-1β, IL-4, IL-8 and OVA-immunoglobulin (Ig)E, as well as leukocyte counts in the bronchoalveolar lavage fluid (BALF) were measured. Pathological features and expression of TLR2, MyD88 and NF-κB in the lungs were analyzed. Expression of TLR2 and MyD88, and activation of NF-κB in leukocytes as well as levels of IL-4, IL-6 and IL-8 released from leukocytes exposed to IL-1β were assessed. OVA treatment increased the levels of IL-1β, IL-4 and IL-8 in the serum and BLAF, the number of leukocytes and the levels of OVA-IgE in the BALF, the expression of TLR2 and MyD88, and the activation of NF-κB in the lung. These increments induced by OVA were inhibited by treatment with BML-111 and anti-IL-1β antibodies. Treatment of the leukocytes with BML-111 or TLR2 antibody, or MyD88 or NF-κB inhibitor, all blocked the IL-1β-triggered production of IL-4, IL-6 and IL-8 and activation of NF-κB. Treatment of the leukocytes with BML-111 or TLR2 antibody suppressed IL-1β-induced TLR2 and MyD88 expression. The present study therefore suggested that OVA-induced airway inflammation is mediated by the TLR2/MyD88/NF-κB pathway. IL-1β has a pivotal role in the airway inflammation and upregulation of the TLR2/MyD88/NF-κB pathway induced by OVA. BML-111 and anti-IL-1β antibody restrains the OVA-induced airway inflammation via downregulation of the TLR2/MyD88/NF-κB pathway.