Improving in vitro maturation and pregnancy outcome in cattle using a novel oocyte shipping and maturation system not requiring a CO₂ gas phase.

PMID 25816757


The present work evaluated the benefit of a novel shipping and maturation medium (SMM) not requiring a CO2 gas for maturation and subsequent embryonic development of slaughterhouse and ovum pickup (OPU) bovine cumulus-oocyte complexes (COCs). Four experiments were conducted. In experiment 1, COCs were maturated for 18 hours in SMM and then incubated for 6 hours in, or 24 hours in a conventional system (control). Experiment 2 compared maturation for 24 hours in SMM versus 24 hours in the control. Experiment 3 compared three different incubation temperatures (37 °C, 38 °C, and 38.5 °C) for COCs maturation in SMM. In experiment 4, COCs obtained from 166 OPU sessions (representing two dairy and two beef breeds) in two locations (Wisconsin and California) were matured in SMM or control and evaluated relative to embryo production and pregnancy rates. Frozen semen was used for all experiments. The results for experiment 1 showed that the blastocyst rate and total embryo production rate (TE, Day-7 morulae plus all blastocysts) were higher for SMM than those in the control. However, no differences were observed for cleavage rate or blastocyst stage. In experiment 2, the blastocyst rate and TE were higher for SMM than those in the control; however, there was no difference for cleavage rate, total cell number, blastocyst stage. In experiment 3, the cleavage rate was similar, but the blastocyst rate and TE were greater for 38.5 °C than those for 38.0 °C and 37.5 °C. For experiment 4, Wisconsin OPU-derived COCs had a greater cleavage rate, blastocyst rate, TE, and blastocyst stage for SMM versus control. There were no breed effects. For the California trial, OPU-derived COCs matured in SMM had similar cleavage and pregnancy rates at Day 35 but greater blastocyst rates and transferred embryos per session than the control, which resulted in 2.2 more pregnancies per OPU session. Holstein COCs had superior embryonic development but similar pregnancy compared with Jersey. We conclude that COCs matured in SMM had greater oocyte competence than the control. Also, maturation at 38.5 °C in SMM was optimal for embryonic development. In summary, SMM resulted in greater embryonic development, similar pregnancy rates, but higher pregnancies per OPU session than the conventional maturation system.