EMAIL THIS PAGE TO A FRIEND

The British journal of nutrition

Dietary Njavara rice bran oil reduces experimentally induced hypercholesterolaemia by regulating genes involved in lipid metabolism.


PMID 25823019

Abstract

The present study was carried out to evaluate the anti-atherogenic effect of Njavara rice bran oil (NjRBO) on atherosclerosis by modulating enzymes and genes involved in lipid metabolism in rats fed a high-cholesterol diet (HCD). Adult male rats (Sprague-Dawley strain, weighing 100-120xa0g) were divided into three groups of nine animals each. Group I served as the control, group II were fed a HCD and group III were fed a HCD and NjRBO (100xa0mg/kg body weight). The study duration was 60xa0d. Serum and tissue lipid profile, atherogenic index, enzymes of lipid metabolism, plasma C-reactive protein levels, serum paraoxonase and arylesterase activities, thiobarbituric acid-reactive substances, gene and protein expression of paraoxonase 1 (PON1), PPARα, ATP-binding cassette transporter A1 (ABCA1), apoB and apoA1 in the liver were quantified. Total cholesterol, TAG, phospholipid, NEFA, LDL-cholesterol concentrations in the serum and liver, lipogenic enzyme activities, hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity and atherogenic index were significantly increased in HCD-fed rats, but they decreased after treatment with NjRBO. HDL-cholesterol level and lecithin cholesterol acyl transferase activity were increased in the NjRBO-treated group, but decreased in the HCD-fed group. The expression levels of ABCA1, apoA1, PON1 and PPARα were found to be significantly increased in NjRBO-treated group compared with the HCD-fed group; however, the expression level of apoB was found to be higher in HCD-fed group and lower in the NjRBO-treated group. These data suggest that NjRBO possesses an anti-atherogenic property by modulating lipid metabolism and up-regulating genes involved in reverse cholesterol transport and antioxidative defence mechanism through the induction of the gene expression PON1.