Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology

Analysis of cytokine production by peanut-reactive T cells identifies residual Th2 effectors in highly allergic children who received peanut oral immunotherapy.

PMID 25823600


Only limited evidence is available regarding the cytokine repertoire of effector T cells associated with peanut allergy, and how these responses relate to IgE antibodies to peanut components. To interrogate T cell effector cytokine populations induced by Ara h 1 and Ara h 2 among peanut allergic (PA) children in the context of IgE and to evaluate their modulation during oral immunotherapy (OIT). Peanut-reactive effector T cells were analysed in conjunction with specific IgE profiles in PA children using intracellular staining and multiplex assay. Cytokine-expressing T cell subpopulations were visualized using SPICE. Ara h 2 dominated the antibody response to peanut as judged by prevalence and quantity among a cohort of children with IgE to peanut. High IgE (> 15 kU(A)/L) was almost exclusively associated with dual sensitization to Ara h 1 and Ara h 2 and was age independent. Among PA children, IL-4-biased responses to both major allergens were induced, regardless of whether IgE antibodies to Ara h 1 were present. Among subjects receiving OIT in whom high IgE was maintained, Th2 reactivity to peanut components persisted despite clinical desensitization and modulation of allergen-specific immune parameters including augmented specific IgG4 antibodies, Th1 skewing and enhanced IL-10. The complexity of cytokine-positive subpopulations within peanut-reactive IL-4(+) and IFN-γ(+) T cells was similar to that observed in those who received no OIT, but was modified with extended therapy. Nonetheless, high Foxp3 expression was a distinguishing feature of peanut-reactive IL-4(+) T cells irrespective of OIT, and a correlate of their ability to secrete type 2 cytokines. Although total numbers of peanut-reactive IL-4(+) and IFN-γ(+) T cells are modulated by OIT in highly allergic children, complex T cell populations with pathogenic potential persist in the presence of recognized immune markers of successful immunotherapy.