BMC complementary and alternative medicine

Paeonolum protects against MPP(+)-induced neurotoxicity in zebrafish and PC12 cells.

PMID 25925762


Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting 2% of the population aged over 65xa0years old. Mitochondrial defects and oxidative stress actively participate in degeneration of dopaminergic (DA) neurons in PD. Paeonolum, a main component isolated from Moutan cortex, has potent antioxidant ability. Here, we have examined the effects of paeonolum against MPP(+)-induced neurotoxicity in zebrafish and PC12 cells. The overall viability and neurodegeneration of DA neurons was assessed in ETvmat2:green fluorescent protein (GFP) transgenic zebrafish, in which most monoaminergic neurons are labeled by GFP. Damage to PC12 cells was measured using a cell viability assay and assessment of nuclear morphology. Intracellular reactive oxygen species (ROS) and the level of total GSH were assessed. The mitochondrial cell death pathway including mitochondrial membrane potential, cytochrome C release and caspase-3 activity were also examined in PC12 cells. Paeonolum protected against MPP(+)-induced DA neurodegeneration and locomotor dysfunction in zebrafish in a concentration-dependent manner. Similar neuroprotection was replicated in the PC12 cellular model of MPP(+) toxicity. Paeonolum attenuated MPP(+)-induced intracellular ROS accumulation and restored the level of total GSH in PC12 cells. Furthermore, paeonolum significantly inhibited the mitochondrial cell death pathway induced by MPP(+). Collectively, the present study demonstrates that paeonolum protects zebrafish and PC12 cells against MPP(+)-induced neurotoxicity.