EMAIL THIS PAGE TO A FRIEND

Materials science & engineering. C, Materials for biological applications

Development of Gd(III) porphyrin-conjugated chitosan nanoparticles as contrast agents for magnetic resonance imaging.


PMID 25953574

Abstract

A novel magnetic resonance imaging (MRI) contrast agent based on gadolinium meso-tetrakis(4-pyridyl)porphyrin [Gd(TPyP)] conjugated with chitosan nanoparticles has been developed. The chitosan nanoparticles were synthesized following an ionic gelation method and the conditions optimized to generate small nanoparticles (CNs) with a narrow size distribution of 35-65 nm. The gadolinium meso-tetrakis(4-pyridyl)porphyrin [Gd(TPyP)] was loaded into chitosan nanoparticles by passive adsorption. The interaction of chitosan with Gd(TPyP) has been examined by UV-visible, Fourier transform infrared spectroscopies (FT-IR) and inductively coupled plasma mass spectrometry (ICP-MS), which indicate the successful association of Gd(TPyP) without any structural distortion throughout the chitosan nanoparticles. The potential of Gd(TPyP)-CNs as MRI contrast agent has been investigated by magnetic resonance imaging (MRI) in-vitro. Relaxivities of Gd(TPyP)-CNs obtained from T1-weighted images, increased with Gd concentration and attained an optimum r1 of 38.35 mM(-1) s(-1), which is 12-fold higher compared to commercial Gd-DOTA (~4 mM(-1) s(-1) at 3T). The combination of such strong MRI contrast with the known properties of porphyrins in photodynamic therapy and biocompatibility of chitosan, presents a new perspective in using these compounds in cancer theranostics.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

28-4630
Sodium tripolyphosphate, SAJ first grade, 56.0-61.0% P2O5 basis
Na5O10P3