Chemical research in toxicology

Analysis of different fates of DNA adducts in adipocytes post-sulfur mustard exposure in vitro and in vivo using a simultaneous UPLC-MS/MS quantification method.

PMID 25955432


Sulfur mustard (SM) is a powerful alkylating vesicant that can rapidly penetrate skin, ocular, and lung bronchus mucous membranes and react with numerous nucleophiles in vivo. Although the lesion mechanisms of SM remain unclear, DNA damage is believed to be the most crucial factor in initiating SM-induced toxicity. Four major DNA adducts were identified for retrospective detection and DNA lesion evaluation, namely, N(7)-[2-[(2-hydroxyethyl)thio]-ethyl]guanine (N(7)-HETEG), bis(2-ethyl-N(7)-guanine)thioether (Bis-G), N(3)-(2-hydroxyethylthioethyl)-2'-adenine (N(3)-HETEA), and O(6)-[2-[(2-hydroxyethyl)thio]-ethyl]guanine (O(6)-HETEG). Because of previous observations that the levels of SM-DNA adducts were relatively higher in adipose-rich organs, such as the brain, we focused on the in vitro and in vivo fates of the DNA adducts in exposed adipocytes. A UPLC-MS/MS method developed in our laboratory was used to profile the N(7)-HETEG, Bis-G, and N(3)-HETEA levels in human mature adipocytes (HA-s) that had differentiated from human subcutaneous preadipocytes (HPA-s). This method was also used to profile three other cell lines related to the targeting of major tissues, including human keratinocytes (HaCaT), human hepatocytes (L-02), and human lung fibroblasts (HLF). Long-lasting adduct persistence and a high proportion of Bis-G were found in exposed adipocytes in vitro. The survival properties of exposed adipocytes were also tested. At the same time, the fate of SM-DNA adducts in vivo was characterized using a rat model exposed to 1 and 10 mg/kg doses of SM. The level of DNA adducts in the exposed adipose tissue (AT) was much lower than those in other organs studied in our previous work. The adduct persistence behavior was observed in AT with an extremely high proportion of Bis-G, which was higher than N(7)-HETEG. In light of these results, we suggest that an adipose-rich environment may promote the formation of Bis-G and that adipocyte-specific DNA repair mechanisms may result in adduct persistence and the survival of adipocytes after SM exposure. These conclusions should be further investigated.