Journal of immunology (Baltimore, Md. : 1950)

Batf2/Irf1 induces inflammatory responses in classically activated macrophages, lipopolysaccharides, and mycobacterial infection.

PMID 25957166


Basic leucine zipper transcription factor Batf2 is poorly described, whereas Batf and Batf3 have been shown to play essential roles in dendritic cell, T cell, and B cell development and regulation. Batf2 was drastically induced in IFN-γ-activated classical macrophages (M1) compared with unstimulated or IL-4-activated alternative macrophages (M2). Batf2 knockdown experiments from IFN-γ-activated macrophages and subsequent expression profiling demonstrated important roles for regulation of immune responses, inducing inflammatory and host-protective genes Tnf, Ccl5, and Nos2. Mycobacterium tuberculosis (Beijing strain HN878)-infected macrophages further induced Batf2 and augmented host-protective Batf2-dependent genes, particularly in M1, whose mechanism was suggested to be mediated through both TLR2 and TLR4 by LPS and heat-killed HN878 (HKTB) stimulation experiments. Irf1 binding motif was enriched in the promoters of Batf2-regulated genes. Coimmunoprecipitation study demonstrated Batf2 association with Irf1. Furthermore, Irf1 knockdown showed downregulation of IFN-γ- or LPS/HKTB-activated host-protective genes Tnf, Ccl5, Il12b, and Nos2. Conclusively, Batf2 is an activation marker gene for M1 involved in gene regulation of IFN-γ-activated classical macrophages, as well as LPS/HKTB-induced macrophage stimulation, possibly by Batf2/Irf1 gene induction. Taken together, these results underline the role of Batf2/Irf1 in inducing inflammatory responses in M. tuberculosis infection.