Journal of virology

Conservation of the STING-Mediated Cytosolic DNA Sensing Pathway in Zebrafish.

PMID 25972544


Zebrafish (Danio rerio) is a unique potential model animal for dissecting innate immune signaling. Here we demonstrate that herpes simplex virus 1 (HSV-1) could infect zebrafish at its different developmental stages and trigger the expression of type I interferons (IFNs) as well as interferon-stimulated genes (ISGs) in zebrafish larvae. Silencing of zSTING, but not zMAVS, markedly attenuates the DNA virus-induced antiviral responses. Notably, a conserved serine residue (S373) is essential for the action of zSTING. Unexpectedly, zebrafish cyclic GMP-AMP synthase (cGAS) is dispensable for the STING signaling, whereas zDHX9 and zDDX41 are potential sensors for HSV-1 infection in vivo. Taken together, this proof-of-concept study establishes the zebrafish larva as a feasible model for investigating the cytosolic DNA sensing mechanism, shedding light on the conservation of the STING antiviral signaling pathway. The zebrafish larva provides technical advantages for understanding host-pathogen interactions. In this study, we established the zebrafish larva as a useful model for studying HSV-1 infection. HSV-1 infection triggers strong type I interferon production, which depends on STING expression. In addition, STING-mediated antiviral signaling is conserved in zebrafish. Interestingly, zDHX9 and zDDX41 are indispensable for detecting HSV-1, while cGAS is dispensable. This proof-of-concept study indicates that the zebrafish represents an amenable model for the investigation of cytosolic DNA sensing mechanisms.