EMAIL THIS PAGE TO A FRIEND

EJNMMI research

Evaluation of the specificity of [(18)F]fludarabine PET/CT in a xenograft model of follicular lymphoma: comparison with [(18)F]FDG and impact of rituximab therapy.


PMID 25977881

Abstract

[(18)F]Fludarabine is a novel positron emission tomography (PET) radiotracer for imaging lymphoma. The purpose of this preclinical study was to evaluate the robustness of [(18)F]fludarabine during rituximab therapy. In addition, a comparison was made between [(18)F]fludarabine and [(18)F]fluorodeoxyglucose ([(18)F]FDG) with regard to their concordance with histologically derived data. CB17-SCID mice bearing human follicular DOHH-2 lymphoma were treated once weekly with rituximab (10 mg/kg) or physiological saline over 3 weeks. To obtain the tracer uptake in the metabolically active volume of the tumour (MAVT), a background-level threshold was applied to the volume of interest (VOI) defined on computed tomography (CT) image. The tumour uptake analysis was performed with MAVT-based segmentation for data analysis of sequential [(18)F]fludarabine PET/CT studies and with total tumour-based segmentation for comparison with histologically derived data. The correlation between the MAVT and [(18)F]fludarabine accumulation (%ID) in those viable tissues was equally significant for both vehicle- or rituximab-treated mice; for these latter, the presence of lymphoid tissues at the end of imaging sessions was confirmed histologically. A stronger correlation was demonstrated between quantitative values extracted from [(18)F]fludarabine-PET and histology (r (2) = 0.91, p < 0.001) when compared to [(18)F]FDG-PET (r (2) = 0.55, p = 0.03). [(18)F]Fludarabine uptake in the follicular lymphoma model compared favourably with [(18)F]FDG in terms of specificity for PET imaging and also remained robust for persistent viable tissues following rituximab therapy. [(18)F]Fludarabine PET/CT may be a promising approach to evaluate lymphoma, including their surveillance during therapy.