EMAIL THIS PAGE TO A FRIEND

Biochemical and biophysical research communications

CCR7 is involved in BCR-ABL/STAP-2-mediated cell growth in hematopoietic Ba/F3 cells.


PMID 26102025

Abstract

Chronic myeloid leukemia is a clonal disease characterized by the presence of the Philadelphia chromosome and its oncogenic product, BCR-ABL, which activates multiple pathways involved in cell survival, growth promotion, and disease progression. We previously reported that in murine hematopoietic Ba/F3 cells, signal transducing adaptor protein-2 (STAP-2) binds to BCR-ABL and up-regulates BCR-ABL phosphorylation, leading to enhanced activation of its downstream signaling molecules. The binding of STAP-2 to BCR-ABL also influenced the expression levels of chemokine receptors, such as CXCR4 and CCR7. For the induction of CCR7 expression, signals mediated by the MAPK/ERK pathway were critical in Ba/F3 cells expressing BCR-ABL and STAP-2. In addition, STAP-2 cooperated with BCR-ABL to induce the production of CCR7 ligands, CCL19 and CCL21. Our results demonstrate a contribution of CCR7 to STAP-2-dependent enhancement of BCR-ABL-mediated cell growth in Ba/F3 cells.