American journal of physical medicine & rehabilitation

Exercise Training Inhibits the Nogo-A/NgR1/Rho-A Signals in the Cortical Peri-infarct Area in Hypertensive Stroke Rats.

PMID 26135366


The aim of this study was to test the hypothesis that exercise training promotes motor recovery after stroke by facilitating axonal remodeling via inhibition of the Nogo-A/NgR1 and Rho-A pathway. A distal middle cerebral artery occlusion model was generated in stroke-prone renovascular hypertensive rats. Stroke-prone renovascular hypertensive rats were randomly divided into a control group, an exercise training group, and a sham group. Motor function was measured using the grip strength test. Axon and myelin remodeling markers, growth-associated protein 43, myelin basic protein, Tau, and amyloid precursor protein were detected by immunofluorescence. The expression of Nogo-A, NgR1, and Rho-A was demonstrated by immunofluorescence and Western blotting in the peri-infarction area at 7, 14, 28, and 52 days after distal middle cerebral artery occlusion. Grip strength was higher in the exercise training group (P < 0.05). Exercise training increased the expression of growth-associated protein 43, myelin basic protein (at 7, 14, and 28 days), and Tau (at 7 and 14 days), and decreased the expression of axonal damage amyloid precursor protein (at 7 and 14 days), compared with the control group. The protein levels of Nogo-A (at 7 and 14 days), NgR1 (at 7, 14, and 28 days), and Rho-A (at 14 and 28 days) were reduced after exercise training. Exercise training promotes axonal recovery, which is associated with functional improvement after cerebral infarction. Down-regulation of the Nogo-A/NgR1/Rho-A may mediate the axonal remodeling induced by exercise training.