EMAIL THIS PAGE TO A FRIEND

Journal of tissue engineering and regenerative medicine

Silk coating on a bioactive ceramic scaffold for bone regeneration: effective enhancement of mechanical and in vitro osteogenic properties towards load-bearing applications.


PMID 26215082

Abstract

Bioactive ceramic scaffolds represent competitive choices for clinical bone reconstruction, but their widespread use is restricted by inherent brittleness and weak mechanical performance under load. This study reports the development of strong and tough bioactive scaffolds suitable for use in load-bearing bone reconstruction. A strong and bioactive ceramic scaffold (strontium-hardystonite-gahnite) is combined with single and multiple coating layers of silk fibroin to enhance its toughness, producing composite scaffolds which match the mechanical properties of cancellous bone and show enhanced capacity to promote in vitro osteogenesis. Also reported for the first time is a comparison of the coating effects obtained when a polymeric material is coated on ceramic scaffolds with differing microstructures, namely the strontium-hardystonite-gahnite scaffold with high-density struts as opposed to a conventional ceramic scaffold, such as biphasic calcium phosphate, with low-density struts. The results show that silk coating on a unique ceramic scaffold can lead to simple and effective enhancement of its mechanical and biological properties to suit a wider range of applications in clinical bone reconstruction, and also establish the influence of ceramic microstructure on the effectiveness of silk coating as a method of reinforcement when applied to different types of ceramic bone graft substitutes. Copyright © 2015 John Wiley & Sons, Ltd.