EMAIL THIS PAGE TO A FRIEND

Antimicrobial agents and chemotherapy

Elevated Expression of GlpT and UhpT via FNR Activation Contributes to Increased Fosfomycin Susceptibility in Escherichia coli under Anaerobic Conditions.


PMID 26248376

Abstract

Because a shortage of new antimicrobial agents is a critical issue at present, and with the spread of multidrug-resistant (MDR) pathogens, the use of fosfomycin to treat infections is being revisited as a "last-resort option." This drug offers a particular benefit in that it is more effective against bacteria growing under oxygen-limited conditions, unlike other commonly used antimicrobials, such as fluoroquinolones and aminoglycosides. In this study, we showed that Escherichia coli strains, including enterohemorrhagic E. coli (EHEC), were more susceptible to fosfomycin when grown anaerobically than when grown aerobically, and we investigated how the activity of this drug was enhanced during anaerobic growth of E. coli. Our quantitative PCR analysis and a transport assay showed that E. coli cells grown under anaerobic conditions had higher levels of expression of glpT and uhpT, encoding proteins that transport fosfomycin into cells with their native substrates, i.e., glycerol-3-phosphate and glucose-6-phosphate, and led to increased intracellular accumulation of the drug. Elevation of expression of these genes during anaerobic growth requires FNR, a global transcriptional regulator that is activated under anaerobic conditions. Purified FNR bound to DNA fragments from regions upstream of glpT and uhpT, suggesting that it is an activator of expression of glpT and uhpT during anaerobic growth. We concluded that the increased antibacterial activity of fosfomycin toward E. coli under anaerobic conditions can be attributed to elevated expression of GlpT and UhpT following activation of FNR, leading to increased uptake of the drug.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

08800
7-Amino-4-hydroxy-2-naphthalenesulfonic acid, technical, ≥90% (T)
C10H9NO4S