BioMed research international

Regulation of Cell Cycle Regulators by SIRT1 Contributes to Resveratrol-Mediated Prevention of Pulmonary Arterial Hypertension.

PMID 26273643


Pulmonary arterial hypertension (PAH) is a major cause of morbidity and mortality in rheumatic diseases. Vascular remodeling due to the proliferation of pulmonary arterial smooth muscle cells (PASMCs) is central to the development of PAH. To date, it is still unclear if Silence Information Regulator 1 (SIRT1) regulates cell cycle regulators in the proliferation of PASMCs and contributes to prevention of PAH by resveratrol. In this study, we found that a significant decrease of SIRT1 expression levels in platelet-derived growth factor BB (PDGF-BB) treated human PASMCs (HPASMCs) and in monocrotaline (MCT) induced PAH rat. Overexpression of SIRT1 induced G1 phase arrest and increased p21 expression but decreased cyclin D1 expression in PDGF-BB treated HPASMCs. Moreover, resveratrol attenuated pulmonary arterial remodeling, decreased pulmonary arterial pressure, and upregulated SIRT1 and p21 expression but downregulated cyclin D1 expression in MCT induced PAH rat. Notably, knockdown of SIRT1 eliminated the regulation of resveratrol on p21 and cyclin D1 expression in PDGF-BB treated HPASMCs. These results demonstrated that SIRT1 mediated the regulation of resveratrol on the expression of cell cycle regulatory molecules. It suggests that SIRT1 exerts a protective role in PAH associated with rheumatic diseases and can be a potential treatment target.