Biological trace element research

Time and Concentration-Dependent Therapeutic Potential of Silver Nanoparticles in Cervical Carcinoma Cells.

PMID 26276565


Silver nanoparticles (AgNPs) have well-known anti-bacterial properties and have been widely used in daily life as various medical and general products. There is limited information available on the cytotoxicity of AgNPs. Therefore, the present study aimed to investigate the cytotoxicity of AgNPs in HeLa cells. Cytotoxicity and apoptosis have been observed in the AgNPs treated in the HeLa cells. Sulphorhodamine-B assay (SRB assay) showed the cytotoxic effect in the AgNP-treated HeLa cells. Inverted microscope, fluorescence microscope, and confocal laser scanning microscope (CLSM) analyses showed the apoptosis-induced morphological changes such as rounding in shape, nuclear fragmentation, cytoplasm reduction, loss of adhesion, and reduced cell volume. Necrosis and apoptosis were observed in the AgNP-treated HeLa cells by DNA fragmentation study. Mitochondria-derived reactive oxygen species (ROS) have increased in AgNP-treated HeLa cells. Up-regulation of messenger RNA (mRNA) expression of p53, bax, and caspase 3 were found in AgNP-treated HeLa cells. Caspase 3 enzyme activity was found to increase in AgNP-treated HeLa cells. The AgNPs showed the right cytotoxic effect in cervical carcinoma cells. Our results suggest that metal-based nanoparticles might be a potential candidate for the treatment of cervical cancer.