International journal of hematology

Overexpression of salivary-type amylase reduces the sensitivity to bortezomib in multiple myeloma cells.

PMID 26341959


Amylase-producing myeloma exhibits refractoriness to chemotherapy and a dismal prognosis. In this study, we established a human myeloma cell line, 8226/AMY1, in which a lentivirally transfected AMY1 gene was stably expressed and explored its biological characteristics. 8226/AMY1 showed a survival advantage over mock control when treated with dexamethasone, bortezomib, and lenalidomide in vitro partly through inhibition of apoptosis induced by these reagents. In a xenograft murine model, 8226/AMY1 showed rapid tumor growth and reduced sensitivity to bortezomib compared with mock. A microarray gene expression analysis identified TCL1A, which functions as a coactivator of the cell survival kinase Akt, differentially up-regulated in 8226/AMY1. The expression of phosphorylated Akt was increased in the 8226/AMY1 cells following bortezomib treatment, but not in the mock cells. In addition, treatment with perifosine, an inhibitor of Akt phosphorylation, enhanced the anti-myeloma effect of bortezomib in the 8226/AMY1 cells. Our data suggest that amylase-producing myeloma reduced the sensitivity to bortezomib in vitro and in vivo, and the up-regulation of TCL1A may influence the drug susceptibility of 8226/AMY1 via the phosphorylation of Akt. These findings provide clues for developing treatment approaches for not only amylase-producing myeloma, but also relapsed and refractory myelomas.