EMAIL THIS PAGE TO A FRIEND

ACS nano

Metal-Semiconductor Hybrid Aerogels: Evolution of Optoelectronic Properties in a Low-Dimensional CdSe/Ag Nanoparticle Assembly.


PMID 26389642

Abstract

Hybrid nanomaterials composed of metal-semiconductor components exhibit unique properties in comparison to their individual counterparts, making them of great interest for optoelectronic applications. Theoretical and experimental studies suggest that interfacial interactions of individual components are of paramount importance to produce hybrid electronic states. The direct cross-linking of nanoparticles (NPs) via controlled removal of the surfactant ligands provides a route to tune interfacial interactions in a manner that has not been thoroughly investigated. Herein, we report the synthesis of CdSe/Ag heteronanostructures (aerogels) via oxidation induced self-assembly of thiol-coated NPs and the evolution of optical properties as a function of composition. Three hybrid systems were investigated, where the first and second excitonic energies of CdSe were matched with plasmonic energy of Au or Ag NPs and Ag hollow NPs. Physical characterization of the aerogels suggests the presence of an interconnected network of hexagonal CdSe and cubic Ag NPs. The optical properties of hybrids were systematically examined through UV-vis, photoluminescence (PL), and time-resolved (TR) PL spectroscopic studies that indicate the generation of alternate radiative decay pathways. A new emission (640 nm) from CdSe/Ag aerogels emerged at Ag loading as low as 0.27%, whereas absorption band tailing and PL quenching effects were observed at higher Ag and Au loading, respectively. The TRPL decay time of the new emission (∼600 ns) is markedly different from those of the band-edge (1.83 ± 0.03 ns) and trap-state (1190 ± 120 ns) emission maxima of phase pure CdSe, supporting the existence of alternate radiative relaxation pathways in sol-gel derived CdSe/Ag hybrids.