EMAIL THIS PAGE TO A FRIEND

The Journal of biological chemistry

The Protein Complex of Neurodegeneration-related Phosphoinositide Phosphatase Sac3 and ArPIKfyve Binds the Lewy Body-associated Synphilin-1, Preventing Its Aggregation.


PMID 26405034

Abstract

The 5-phosphoinositide phosphatase Sac3, in which loss-of-function mutations are linked to neurodegenerative disorders, forms a stable cytosolic complex with the scaffolding protein ArPIKfyve. The ArPIKfyve-Sac3 heterodimer interacts with the phosphoinositide 5-kinase PIKfyve in a ubiquitous ternary complex that couples PtdIns(3,5)P2 synthesis with turnover at endosomal membranes, thereby regulating the housekeeping endocytic transport in eukaryotes. Neuron-specific associations of the ArPIKfyve-Sac3 heterodimer, which may shed light on the neuropathological mechanisms triggered by Sac3 dysfunction, are unknown. Here we conducted mass spectrometry analysis for brain-derived interactors of ArPIKfyve-Sac3 and unraveled the α-synuclein-interacting protein Synphilin-1 (Sph1) as a new component of the ArPIKfyve-Sac3 complex. Sph1, a predominantly neuronal protein that facilitates aggregation of α-synuclein, is a major component of Lewy body inclusions in neurodegenerative α-synucleinopathies. Modulations in ArPIKfyve/Sac3 protein levels by RNA silencing or overexpression in several mammalian cell lines, including human neuronal SH-SY5Y or primary mouse cortical neurons, revealed that the ArPIKfyve-Sac3 complex specifically altered the aggregation properties of Sph1-GFP. This effect required an active Sac3 phosphatase and proceeded through mechanisms that involved increased Sph1-GFP partitioning into the cytosol and removal of Sph1-GFP aggregates by basal autophagy but not by the proteasomal system. If uncoupled from ArPIKfyve elevation, overexpressed Sac3 readily aggregated, markedly enhancing the aggregation potential of Sph1-GFP. These data identify a novel role of the ArPIKfyve-Sac3 complex in the mechanisms controlling aggregate formation of Sph1 and suggest that Sac3 protein deficiency or overproduction may facilitate aggregation of aggregation-prone proteins, thereby precipitating the onset of multiple neuronal disorders.