EMAIL THIS PAGE TO A FRIEND

Cell biology international

Roles of different mitochondrial electron transport chain complexes in hypoxia-induced pulmonary vasoconstriction.


PMID 26454147

Abstract

This study was designed to investigate the roles of different mitochondrial electron transport chain (ETC) complexes (I, II, III, and IV) on hypoxia-induced hypoxic pulmonary vasoconstriction (HPV). The third and fourth pulmonary arteries were collected from the normal tissues adjacent to tumors in 16 patients with lung cancer who had undergone lung cancer resections to isolate pulmonary artery smooth muscle cells (PASMCs). PASMCs were divided into seven groups and exposed to one of the following treatments: (1) normoxia (21% O(2), 5% CO(2), and 74% N(2)); (2) hypoxia (1% O(2), 5% CO(2), 94% N(2)); (3) hypoxia plus ETC complex I inhibitor MPP; (4) hypoxia plus ETC complex II inhibitor TTFA; (5) hypoxia plus ETC complex III Q(o) (pre) site inhibitor myxothiazol; (6) hypoxia plus ETC complex III Qi (post) site inhibitor antimycin A; (7) hypoxia plus ETC complex IV inhibitor NaN(3). Intracellular [Ca(2+) ]i and [ROS]i, mitochondrial [ROS]i, and PA rings tension were measured. Intracellular [Ca(2+) ]i and [ROS]i, mitochondrial [ROS]i, and PA ring tension were increased after hypoxia for 10 min. Mitochondrial ETC complex inhibitor MPP, TTFA, and myxothiazol significantly reduced [Ca(2+) ]i [ROS]i and PA tension (P < 0.01), whereas antimycin A and NaN(3) did not effectively reduce them. These results demonstrated it were mitochondrial ETC complex I, II, and III Q(o) site but not III Q(i) site and complex IV contribute to hypoxic pulmonary vasoconstriction and pulmonary hypertension.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

D048
MPP+ iodide, ≥98% (HPLC), powder
C12H12IN