EMAIL THIS PAGE TO A FRIEND

Pflugers Archiv : European journal of physiology

Modulation of spontaneous intracellular Ca²⁺ fluctuations and spontaneous cholinergic transmission in rat chromaffin cells in situ by endogenous GABA acting on GABAA receptors.


PMID 26490458

Abstract

Using fluorescence [Ca(2+)]i imaging in rat adrenal slices, we characterized the effects of agonists and antagonists of the GABAA receptor (GABAA-R) on resting intracellular Ca(2+) ([Ca(2+)]i) and spontaneous [Ca(2+)]i fluctuations (SCFs) in hundreds of individual chromaffin cells (CCs) recorded simultaneously in situ. Muscimol, a GABAA-R agonist (20 μM; 25 s), induced an increase of resting [Ca(2+)]i in 43 ± 3 % of CCs, a decrease in 26 ± 2 %, and no response in 30 ± 5 %. In Ca(2+)-free external medium, SCFs ceased completely and muscimol failed to elicit [Ca(2+)]i rises. All muscimol-induced [Ca(2+)]i changes were blocked by the GABAA-R antagonist bicuculline, suggesting that they result from changes in membrane potential depending on the cell's Cl(-) equilibrium potential. Unexpectedly, bicuculline increased the amplitude and frequency of SCFs in 54 % of CCs, revealing a tonic inhibition of SCFs by ambient GABA acting through GABAA-R. Mecamylamine (a specific nicotinic cholinergic blocker) decreased basal SCF activity in 18 % of CCs and inhibited bicuculline-induced SCF intensification, suggesting that spontaneous acetylcholine (ACh) release from nerve endings contributes to SCF generation in CCs in situ and that blockade of presynaptic GABAA-Rs intensifies SCFs in part through the disinhibition of spontaneous cholinergic transmission. Electrophysiological experiments confirmed that spontaneous excitatory postsynaptic currents recorded from CCs in situ were enhanced by bicuculline. To our knowledge, this is the first description of a regulatory effect of endogenous GABA on synaptic currents and SCFs of adrenal CCs. These findings denote a novel GABA-mediated presynaptic and postsynaptic regulatory mechanism of CC activity which may participate in the control of catecholamine secretion.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

P1675
Picrotoxin, powder
C30H34O13