EMAIL THIS PAGE TO A FRIEND

Journal of AOAC International

Quantifying Residues from Postharvest Propylene Oxide Fumigation of Almonds and Walnuts.


PMID 26525262

Abstract

A novel analytical approach involving solvent extraction with methyl tert-butyl ether (MTBE) followed by GC was developed to quantify residues that result from the postharvest fumigation of almonds and walnuts with propylene oxide (PPO). Verification and quantification of PPO, propylene chlorohydrin (PCH) [1-chloropropan-2-ol (PCH-1) and 2-chloropropan-1-ol (PCH-2)], and propylene bromohydrin (PBH) [1-bromopropan-2-ol (PBH-1) and 2-bromopropan-1-ol (PBH-2)] was accomplished with a combination of electron impact ionization MS (EIMS), negative ion chemical ionization MS (NCIMS), and electron capture detection (ECD). Respective GC/EIMS LOQs for PPO, PCH-1, PCH-2, PBH-1, and PBH-2 in MTBE extracts were [ppm (μg/g nut)] 0.9, 2.1, 2.5, 30.3, and 50.0 for almonds and 0.8, 2.2, 2.02, 41.6, and 45.7 for walnuts. Relative to GC/EIMS, GC-ECD analyses resulted in no detection of PPO, similar detector responses for PCH isomers, and >100-fold more sensitive detection of PBH isomers. NCIMS did not enhance detection of PBH isomers relative to EIMS and was, respectively, approximately 20-, 5-, and 10-fold less sensitive to PPO, PCH-1, and PCH-2. MTBE extraction efficiencies were >90% for all analytes. The 10-fold concentration of MTBE extracts yielded recoveries of 85-105% for the PBH isomers and a concomitant decrease in LODs and LOQs across detector types. The recoveries of PCH isomers and PPO in the MTBE concentrate were relatively low (approximately 50 to 75%), which confound improvements in LODs and LOQs regardless of detector type.