EMAIL THIS PAGE TO A FRIEND

Nanoscale research letters

Low-Temperature Thermally Reduced Molybdenum Disulfide as a Pt-Free Counter Electrode for Dye-Sensitized Solar Cells.


PMID 26577390

Abstract

A two-dimensional nanostructure of molybdenum disulfide (MoS2) thin film exposed layered nanosheet was prepared by a low-temperature thermally reduced (TR) method on a fluorine-doped tin oxide (FTO) glass substrate as a platinum (Pt)-free and highly electrocatalytic counter electrode (CE) for dye-sensitized solar cells (DSSCs). Thermogravimetric analysis (TGA) results show that the MoS2 sulfidization temperature was approximately 300 °C. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) indicate that the stoichiometry and crystallization of MoS2 were more complete at higher temperatures; however, these temperatures reduce the number of edge-plane active sites in the short-range-order nanostructure. Accordingly, the DSSCs with 300 °C annealed TR-MoS2 CE exhibited an excellent photovoltaic conversion efficiency (PCE) of 6.351 %, up to 91.7 % of which is obtained using the conventional TD-Pt CE (PCE = 6.929 %). The temperature of thermal reaction and the molar ratio of reaction precursors were found to significantly influence the resulting stoichiometry and crystallization of MoS2 nanosheets, thus affecting DSSCs' performance.