Molecular vision

Effects of chondrocyte-derived extracellular matrix in a dry eye mouse model.

PMID 26604661


The occurrence of repetitive dry eye is accompanied by inflammation. This study investigated the anti-inflammatory effects of chondrocyte-derived extracellular matrix (CDECM) on the cornea and conjunctiva in a dry eye mouse model. Dry eyes were experimentally induced in 12- to 16-week-old NOD.B10.H2(b) mice (Control) via subcutaneous injections of scopolamine (muscarinic receptor blocker) and exposure to an air draft for 10 days (desiccation stress [DS] 10D group). Tear volume and corneal smoothness were measured at 3, 5, 7, and 10 days after the instillation of PBS (PBS group) or CDECM (CDECM group). The corneas and conjunctivas were sectioned and stained with hematoxylin and eosin (H&E) and periodic acid Schiff (PAS). The expression of inflammatory markers (i.e., tumor necrosis factor-α [TNF-α], matrix metalloproteinase-2 [MMP-2], MMP-9, intercellular adhesion molecule-1 [ICAM-1], and vascular cell adhesion molecule-1 [VCAM-1]) was detected by quantitative real-time (qRT)-PCR and western blotting. All data were statistically processed using SPSS version 18.0. The instillation of CDECM after the removal of the DS increased tear production by up to 3.0-fold, and corneal smoothness improved to 80% compared to the PBS group (p<0.05). In the CDECM group, the detachment of the corneal epithelial cells was reduced by 73.3% compared to the PBS group, and the conjunctival goblet cell density was significantly recovered to the control levels (p<0.05). The expression of inflammatory factors was decreased in the cornea and conjunctiva of the CDECM group compared to the PBS group. These observations suggest that CDECM induced effective anti-inflammatory improvements in the cornea and conjunctiva in this experimental model of dry eye.

Related Materials

Product #



Molecular Formula

Add to Cart

(−)-Scopolamine hydrobromide trihydrate, ≥98% (HPLC), powder
C17H21NO4 · HBr · 3H2O
Scopolamine hydrobromide, meets USP testing specifications
C17H21NO4 · HBr · 3H2O