EMAIL THIS PAGE TO A FRIEND

Journal of nanoscience and nanotechnology

Effect of pH and Salt on Adsorption of Double-Stranded DNA on Graphene Oxide.


PMID 26726439

Abstract

Graphene oxide (GO) has a large surface-to-volume ratio and hydrophobic hexagonal rings that can interact with biomolecules. Single-stranded DNA adsorbs strongly to the surface of GO via hydrophobic interactions. GO has been used in optical biosensors and biomedical platforms for the detection of DNA, proteins, and small molecules. This study was designed to measure the adsorption of double-stranded DNA (dsDNA) onto GO according to DNA length, salt concentration, and pH of the reaction. Results showed that dsDNA molecules were adsorbed progressively as the pH changed from 6.0 to 4.0. At high pH, dsDNA adsorption was enhanced by the presence of MgCl2 rather than NaCl. Desorption of DNA from GO, with triton X-100 led to the rapid release of DNA from GO in the presence of MgCl2.