American journal of cancer research

Association of EP2 receptor and SLC19A3 in regulating breast cancer metastasis.

PMID 26807319


Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer patients have higher metastatic rate than patients with other breast cancer subtypes. Distant metastasis is one of the causes leading to the high mortality rates. Cyclooxygenase-2 (COX2) is associated with breast cancer metastasis and the downstream prostaglandin E2 (PGE2) exerted its effect through EP receptors (EP1-EP4). However, the exact molecular events of EP receptors in breast cancer metastasis remain undefined. Expressions of EP receptors were determined during cancer development in NOD-SCID mice inoculated with MB-231 and MB-231-EP2 clone. EP2 overexpressing stable clone was constructed to investigate the proliferation and invasion potentials in vivo and in vitro. Drug transporter array was used to identify EP2 receptor-associated drug transported genes in breast cancer metastasis. Localization of EP2 receptor in primary tissues and xenografts were examined by immunostaining. Stable EP2-expression cells formed larger tumors than parental cells in mice model and was highly expressed in both primary and metastatic tissues. Silencing of EP2 receptor by siRNA and antagonist (AH 6809) significantly decreased cell proliferation and invasion, concomitant with reduced MMP-2 and MMP-9 expressions. Results from array data showed that expression of SLC19A3 was markedly increased in EP2 siRNA transfected cells. Ectopic expression of SLC19A3 retarded cell proliferation, invasion and MMPs expressions. Notably, SLC19A3 had a lower expression in primary tissues and was negatively correlated with EP2 receptor expression. Our novel finding revealed that EP2 receptor regulated metastasis through downregulation of SLC19A3. Thus, targeting EP2-SLC19A3 signaling is a potential therapeutic therapy for treating metastatic breast cancer.