EMAIL THIS PAGE TO A FRIEND

Fundamental & clinical pharmacology

Cilostazol exerts antiplatelet and anti-inflammatory effects through AMPK activation and NF-kB inhibition on hypercholesterolemic rats.


PMID 26950185

Abstract

This work presents a model of rats fed a high-cholesterol diet, receiving a long-term oral administration of cilostazol, a PDE3-inhibitor. The aim of this study was to evaluate the molecular mechanisms by which cilostazol interferes with platelets signaling pathways to avoid atherosclerosis early development. Male Wistar rats were divided into 3 groups: Control group received standard rat chow (C), hypercholesterolemic group (HCD), and HCD+CIL (cilostazol group) received hypercholesterolemic diet for 45 days. HCD+CIL group received cilostazol (30 mg/kg/p.o.) once daily in the last 15 days. Platelet aggregation, lipid profile, lipid peroxidation, and cytokine serum levels were assessed. Expression of P-selectin, CD40L, PKC-α, IkB-α, and iNOS and activation of AMPK, NF-κB, and eNOS in the platelets were assessed using Western blot analysis. Cilostazol reduced the levels of total cholesterol (361.0 ± 12.8 vs. 111.5 ± 1.6 mg/dL), triglycerides (186.9 ± 17.7 vs. 55.4 ±3.1 mg/dL), cLDL (330.9 ± 9.7 vs. 61.5 ± 3.5 mg/dL), cVLDL (45.0 ± 4.6 vs. 11.1 ± 0.6 mg/dL), and malondialdehyde (9.4 ± 0.5 vs. 3.2 ± 0.3 nmol/mL) compared to the HCD group. Cilostazol presented antiplatelet properties and decreased inflammatory markers levels. These effects seem to be related to AMPK activation, NF-kB inhibition, and eNOS activation.