Chinese journal of integrative medicine

Curcumin reduces cardiac fibrosis by inhibiting myofibroblast differentiation and decreasing transforming growth factor β1 and matrix metalloproteinase 9 / tissue inhibitor of metalloproteinase 1.

PMID 26956464


To study the effect of curcumin on fibroblasts in rats with cardiac fibrosis. The rats were randomly divided into 4 groups (n=12 in each group): the normal control, isoproterenol (ISO), ISO combined with low-dose curcumin (ISO+Cur-L), and ISO combined with high-dose curcumin (ISO+Cur-H) groups. ISO+Cur-L and ISO+Cur-H groups were treated with curcumin (150 or 300 mg•kg Curcumin significantly decreased interstitial and perivascular myocardial collagen deposition and cardiac weight index with reducing protein expression of collagen type I/III in hearts (P<0.05). In addition, curcumin directly inhibited angiotensin (Ang) II-induced fibroblast proliferation and collagen type I/III expression in cardiac fibroblasts (P<0.05). Curcumin also inhibited fibrosis by inhibiting myofibroblast differentiation, decreased TGF-β1, MMP-9 and TIMP-1 expression (P<0.05) but had no effects on Smad3 in Ang II incubated cardiac fibroblasts. Curcumin reduces cardiac fibrosis in rats and Ang II-induced fibroblast proliferation by inhibiting myofibroblast differentiation, decreasing collagen synthesis and accelerating collagen degradation through reduction of TGF-β1, MMPs/TIMPs. The present findings also provided novel insights into the role of curcumin as an antifibrotic agent for the treatment of cardiac fibrosis.