EMAIL THIS PAGE TO A FRIEND

Experimental biology and medicine (Maywood, N.J.)

Original Research: Orexins A and B stimulate proliferation and differentiation of porcine preadipocytes.


PMID 27190275

Abstract

Orexin A (OXA) and B (OXB) are neuropeptides which regulate appetite, energy expenditure, and arousal via G-protein coupled receptors termed as OXR1 and OXR2. The aim of this study was to characterize the effects of OXA and OXB on proliferation and differentiation of porcine preadipocytes. Porcine preadipocytes express both OXRs. OXA and OXB enhance porcine preadipocyte proliferation by 54.8% or 63.2 %, respectively. OXA and OXB potentiate differentiation of porcine preadipocytes, as judged by the increased lipid accumulation and expression of proadipogenic genes. Cellular lipid content after exposure of preadipocytes for six days to 100 nM OXA or OXB increased by 82.2% or 59.2%, respectively. OXA and OXB suppressed glycerol release by 23.9% or 24.9% in preadipocytes differentiated for six days. OXA (100 nM) increased peroxisome proliferator-activated receptor gamma (PPARγ) expression in cells differentiated for 24 h by 100.5%. PPARγ expression was also stimulated in preadipocytes differentiated in the presence of 10 nM (58.3%) or 100 nM OXA (50.6%) for three days. OXB potentiated PPARγ mRNA expression at 1 nM (59%), 10 nM (53.2%), and 100 nM (73.9%) in cells differentiated for three days. OXA increased CCAAT/enhancer binding protein alpha expression in preadipocytes differentiated for six days by 65%. OXB stimulated CCAAT/enhancer binding protein beta expression in preadipocytes differentiated for three days at 10 nM (149.5%) as well as 100 nM (207.2%). Lipoprotein lipase mRNA expression increased in cells treated with 10 nM OXA by 152.6% and 100 nM OXA by 162%. Lipoprotein lipase expression increased by 134% at 100 nM OXB. Furthermore, OXA (100 nM) and OXB (100 nM) increased leptin mRNA expression in preadipocytes differentiated for three days by 49.9% or 71.3%, respectively. These data indicate that orexin receptors may be relevant in the context of white adipose tissue formation.