EMAIL THIS PAGE TO A FRIEND

Nanoscale research letters

Plasmonic Pd Nanoparticle- and Plasmonic Pd Nanorod-Decorated BiVO4 Electrodes with Enhanced Photoelectrochemical Water Splitting Efficiency Across Visible-NIR Region.


PMID 27259504

Abstract

The photoelectrochemical (PEC) water splitting performance of BiVO4 is partially hindered by insufficient photoresponse in the spectral region with energy below the band gap. Here, we demonstrate that the PEC water splitting efficiency of BiVO4 electrodes can be effectively enhanced by decorating Pd nanoparticles (NPs) and nanorods (NRs). The results indicate that the Pd NPs and NRs with different surface plasmon resonance (SPR) features delivered an enhanced PEC water splitting performance in the visible and near-infrared (NIR) regions, respectively. Considering that there is barely no absorption overlap between Pd nanostructures and BiVO4 and the finite-difference time domain (FDTD) simulation indicating there are substantial energetic hot electrons in the vicinity of Pd nanostructures, the enhanced PEC performance of Pd NP-decorated BiVO4 and Pd NR-decorated BiVO4 could both benefit from the hot electron injection mechanism instead of the plasmon resonance energy transfer process. Moreover, a combination of Pd NPs and NRs decorated on the BiVO4 electrodes leads to a broad-band enhancement across visible-NIR region.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

520659
Palladium(II) chloride, ≥99.9%
Cl2Pd