Anatomical science international

A dermal equivalent developed from adipose-derived stem cells and electrospun polycaprolactone matrix: an in vitro and in vivo study.

PMID 27329656


Polycaprolactone (PCL) is used as a material of choice for surgical sutures, wound dressings, contraceptives, fixation devices and dentistry in paramedical sciences. In addition, adipose-derived stem cells (ASCs) have been shown to be effective in the treatment of acute and chronic wounds. This study aimed to evaluate the effect of electrospun PCL fibers on keratinocyte differentiation of ASCs and wound healing. PCL solution was electrospun and characterized. Isolated and characterized ASCs were differentiated into keratinocyte-like cells on a tissue culture plate (TCP) and PCL matrices and compared. PCL nano-/microfibers cultured with ASCs (test group) or alone (control) were implanted as a dermal substitute for wound healing. There were significant increases in the proliferation rate and expression level of cytokeratin 14, filaggrin and involucrin in cells cultured on PCL matrices compared to TCP (p < 0.05). After histological and immunological evaluation of the reconstituted skin, a thick epidermal layer with several skin appendages was evidently observed in the ASC/PCL group, whereas no real and mature epidermis was formed, especially in the central area of the healing wound in the pure PCL group on day 14. Pure PCL, if possessing suitable properties including good adhesiveness, high proliferative capability, inductive elasticity and stiffness for migration and differentiation, could drive the keratinocyte differentiation of ASCs and act as an efficient dermal equivalent to promote wound healing.